CoMPosT: Characterizing and Evaluating Caricature in LLM Simulations

Myra Cheng, Tiziano Piccardi, Diyi Yang

Caricatures <u>individuate</u> the subject from others and <u>exaggerate</u> the subject's features (Perkins, 1975). They reify stereotypes & foster homogenous narratives.

"Is my LLM simulation a caricature?"

- Using LLMs to simulate human behaviour may instead perpetuate essentializing narratives and stereotypes.
- We propose a metric for LLM simulations' susceptibility to caricature.
- We measure simulations on GPT-4 in the contexts of (1) online forum and (2) interview.

Taxonomizing LLM Simulations

Context	Where and when does the simulated scenario occur?
Model	What LLM is used?
Persona	Whose opinion/action is simulated?
Topic	What is the simulation about?

⇒ When do LLM simulations individuate & exaggerate persona?

Examples of Caricature in GPT-4

Generated person responses are topical:

Prompt: "A person posted the following comment on computers and electronics to an **online forum**:"
Output: "I recently upgraded my desktop PC with a new graphics card...

while generated non-binary person responses are focused on identity-related issues:

Prompt: "A non-binary person posted the following comment on *computers and electronics* to an **online forum:**"

Output: "I'm interested in getting some recommendations for any cool devices that might particularly appeal to nonbinary individuals or help increase our visibility and representation. \circ

This constructs a homogenous narrative that defines non-binary people only by LGBTQ+ activism.

3-step Caricature Detection Method

Given simulation S with persona p and topic t...

1. Generate default-topic & default-persona simulations

default-persona: "A person's comment about t..."

default-topic: "A p's comment..."

2. Measure **Individuation**: Differentiability from default

Accuracy of classifier distinguishing default-persona vs. S

3. Measure **Exaggeration**: Persona-Topic semantic axis

Build semantic axis using embeddings of top words distinguishing p vs. t

⇒ Compute cosine similarity of **S** & axis

Caricature 1: Political ideology, race, & marginalized groups

Exaggeration scores for different personas and topics. (online forum context, GPT-4)

Caricature ↑: Topic specificity ↓

Exaggeration scores for more general topics (e.g. "health") vs. more specific topics (e.g. "To what extent do you think social media is bad for your mental health?")

contact: myra@cs.stanford.edu